4.8 Article

Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0707001104

关键词

axotomy; laser; femtosecond laser; microsurgery

资金

  1. Howard Hughes Medical Institute Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM054657, R01 GM54657] Funding Source: Medline

向作者/读者索取更多资源

We previously reported functional regeneration of Caenorhabditis elegans motor neurons after femtosecond laser axotomy. We report here that multiple neuronal types can regrow after laser axotomy using a variety of lasers. The precise pattern of regrowth varies with cell type, stage of animal, and position of axotomy. Mechanosensory axons cut in late larval or adult stages displayed extensive regrowth, yet failed to reach their target area because of guidance errors in the anteroposterior axis. By contrast, mechanosensory axons cut in early larval stages regrew at the same rate but with fewer anteroposterior guidance errors, and were more likely to reach their target area. In adult animals lacking the VAB-1 Eph receptor tyrosine kinase, mechanosensory axon regrowth was more accurate than in the wild type, suggesting that guidance errors of regrowing touch neuron axons are the result of Eph signaling. Kinase-dependent and kinase-independent Eph signaling influenced outgrowth and guidance of regrowing touch neurons, respectively. Mechanosensory neurons regrew when severed proximal to their collateral synaptic branch but did not regrow when severed distal to the branch point. However, the distal axon could regrow if the branch is removed surgically at the same time as distal axotomy, or at a later time. The touch neuron synaptic branch point may act as a sorting area to regulate growth. These findings reveal that multiple influences affect regenerative growth in C. elegans neurons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据