4.8 Article

A proposed signaling motif for nuclear import in mRNA processing via the formation of arginine claw

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0703151104

关键词

phosphorylation; RS domain; SR protein; transportin-SR2

向作者/读者索取更多资源

Phosphorylation of proteins by kinases is the most commonly studied class of posttranslational modification, yet its structural consequences are not well understood. The human SIR (serine-arginine) protein ASF/SF2 relies on the processive phosphorylation of the serine residues of eight consecutive arginine-serine (RS) dipeptide repeats at the C terminus by SRPK1 before it can be transported into the nucleus. This SIR protein plays critical roles in spliceosome assembly, pre-mRNA splicing, and mRNA export, and the phosphorylation process of the RS repeats has been extensively studied experimentally. However, knowledge of the conformational changes associated with the phosphorylation of this simple sequence and how it triggers the importation of the SIR protein is lacking. Here, we have carried out extensive molecular dynamics simulations to show that phosphorylation of the eight RS repeats significantly alters the peptide's conformation and leads to the formation of very stable structures that are likely to be involved in the recognition, binding, and transport of the SIR protein. Specifically, we found an unusual symmetry-broken phase of conformations of the repetitive and quasi-symmetric phosphorylated peptide sequence. One of the main characteristics of these conformations is the exposed phosphate groups on the periphery, which possibly could serve as the recognition platform for the transport protein transportin-SR2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据