4.7 Article

Dynamics and neutrino signal of black hole formation in nonrotating failed supernovae. I. Equation of state dependence

期刊

ASTROPHYSICAL JOURNAL
卷 667, 期 1, 页码 382-394

出版社

IOP PUBLISHING LTD
DOI: 10.1086/520876

关键词

black hole physics; equation of state; hydrodynamics; neutrinos; stars : neutron; supernovae : general

向作者/读者索取更多资源

We study black hole formation and the neutrino signal from the gravitational collapse of a nonrotating massive star of 40 M-circle dot. Adopting two different sets of realistic equations of state (EOSs) for dense matter, we perform numerical simulations of general relativistic nu-radiation hydrodynamics under spherical symmetry. We make comparisons of core bounce, shock propagation, evolution of nascent proto-neutron stars, and the resulting recollapse to a black hole to reveal the influence of EOSs. We also explore the influence of EOSs on neutrino emission during the evolution toward black hole formation. We find that the speed of contraction of the nascent proto-neutron star, whose mass increases quickly due to the intense accretion, is different depending on the EOS and that the resulting profiles of density and temperature differ significantly. The black hole formation occurs at 0.6-1.3 s after bounce, when the proto-neutron star exceeds its maximum mass, which is crucially determined by the EOS. We find that the average energies of neutrinos increase after bounce because of rapid temperature increase, but at different speeds depending on the EOS. The duration of neutrino emission up to black hole formation is found to be different according to different recollapse timing. These characteristics of neutrino signatures are distinguishable from those for ordinary proto- neutron stars in successful core-collapse supernovae. We discuss the idea that a future detection of neutrinos from a black hole-forming collapse will contribute to revealing the black hole formation and to constraining the EOS at high density and temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据