4.6 Article

Palladium nanoparticle size effect in 1-hexyne selective hydrogenation

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 111, 期 37, 页码 13933-13937

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp073944k

关键词

-

向作者/读者索取更多资源

The structure sensitivity of a liquid-phase 1-hexyne hydrogenation was studied using monodispersed nonsupported Pd nanoparticles of 6, 8, 11, 13, and 14 nm diameter. The particles were prepared via a reverse microemulsion water/AOT/isooctane. The size was varied by the water-to-surfactant ratio. A 15-fold TOF increase was observed with increase of the particle diameter from 11 to 14 nm. For particles above 14 nm, TOF approached the value of the Pd black catalyst. It was observed that the selectivity toward 1-hexene did not vary with the particle size and was 96.5% at the conversion of 1-hexyne of 85%. The byproduct distribution was characterized by the ratio of selectivities to 2-hexenes/n-hexane and decreased 5-fold with particle diameter from 6 to 11 nm but remained constant for bigger particles. The experimental results indicate a predominance of a geometric nature of the size effect observed during selective 1-hexyne hydrogenation, suggesting that an ensemble of neighboring Pd surface atoms constitutes the active center responsible for hydrogenation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据