4.8 Article

High-spin to low-spin and orbital polarization transitions in multiorbital Mott systems

期刊

PHYSICAL REVIEW LETTERS
卷 99, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.99.126405

关键词

-

向作者/读者索取更多资源

We study the interplay of crystal field splitting and Hund coupling in a two-orbital model which captures the essential physics of systems with two electrons or holes in the e(g) shell. We use single site dynamical mean field theory with a recently developed impurity solver, which is able to access strong couplings and low temperatures. The fillings of the orbitals and the location of phase boundaries are computed as a function of Coulomb repulsion, exchange coupling, and crystal field splitting. We find that the Hund coupling can drive the system into a novel Mott insulating phase with vanishing orbital susceptibility. Away from half-filling, the crystal field splitting can induce an orbital selective Mott state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据