4.5 Article

Evaluation of surface charge density and surface potential by electrophoretic mobility for solid lipid nanoparticles and human brain-microvascular endothelial cells

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 111, 期 38, 页码 11228-11236

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp072876z

关键词

-

向作者/读者索取更多资源

Electrophoretic mobility, zeta potential, surface charge density, and surface potential of cacao butter-based solid lipid nanoparticles (SLN) and human brain-microvascular endothelial cells (HBMEC) were analyzed in this study. Electrophoretic mobility and potential were determined experimentally. Surface charge density and surface potential were evaluated theoretically via incorporation of ion condensation theory with the relationship between surface charge density and surface potential. The results revealed that the lower the pH value, the weaker the electrostatic properties of the negatively charged SLN and HBMEC. A higher content of cacao butter or a slower stirring rate yielded a larger SLN and stronger surface electricity. On the contrary, storage led to instability of SLN suspension and weaker electrical behavior because of hydrolysis of ionogenic groups on the particle surfaces. Also, high H+ concentration resulted in excess adsorption of H+ onto HBMEC, rendering charge reversal and cell death. The largest normalized discrepancy between surface potential and potential occurred at pH = 7. For a fixed biocolloidal species, the discrepancy was nearly invariant at high pH value. However, the discrepancy followed the order of electrical intensity for HBMEC system at low pH value because mammalian cells were sensitive to H+. The present study provided a practical method to obtain surface charge properties by capillary electrophoresis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据