4.6 Article

The CIC-3 chloride transport protein traffics through the plasma membrane via interaction of an N-terminal dileucine cluster with clathrin

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 39, 页码 29022-29031

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M703506200

关键词

-

资金

  1. NIDDK NIH HHS [DK042917] Funding Source: Medline

向作者/读者索取更多资源

ClC-3 is a ubiquitously expressed chloride transport protein that is present in synaptic vesicles and endosome/lysosome compartments. It is largely intracellular but has been observed at the plasma membrane as well. The aim of this study was to identify the pathways and regulation of ClC-3 trafficking to intracellular sites. At the steady state, similar to 94% of transfected ClC-3 was localized intracellularly, and only 6% was at the plasma membrane. Pulse labeling with [S-35]methionine and biotinylation demonstrated that about 25% of newly synthesized ClC-3 traffics through the plasma membrane. We used both immunofluorescence microscopy and biotinylation assays to assess the trafficking of ClC-3. Plasma membrane ClC-3 was rapidly endocytosed ( t1/2 similar to 9 min); a portion entered a recycling pool that returned to the cell surface after internalization, and the remainder trafficked to more distal intracellular compartments. ClC-3 associated with clathrin at the plasma membrane. Coimmunoprecipitation and glutathione S-transferase pulldown assays demonstrated that the N terminus of ClC-3 binds to clathrin. Alanine replacement of a dileucine acidic cluster within the cytosolic N terminus ( amino acids 13-19) resulted in a molecule that had decreased endocytosis and increased surface expression. This replacement also abolished interaction with clathrin as assessed both by coimmunoprecipitation and glutathione S-transferase pulldown assays. We conclude that ClC-3 is primarily an intracellular transport protein that is transiently inserted into the plasma membrane where it is rapidly endocytosed. Internalization of ClC-3 depends on the interaction between an N-terminal dileucine cluster and clathrin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据