4.7 Article

Design-atom approach for the quantum mechanical/molecular mechanical covalent boundary: A design-carbon atom with five valence electrons

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 127, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2774980

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM079223, R01 GM079223-01, R01-GM079223] Funding Source: Medline

向作者/读者索取更多资源

A critical issue underlying the accuracy and applicability of the combined quantum mechanical/molecular mechanical (QM/MM) methods is how to describe the QM/MM boundary across covalent bonds. Inspired by the ab initio pseudopotential theory, here we introduce a novel design atom approach for a more fundamental and transparent treatment of this QM/MM covalent boundary problem. The main idea is to replace the boundary atom of the active part with a design atom, which has a different number of valence electrons but very similar atomic properties. By modifying the Troullier-Martins scheme, which has been widely employed to construct norm-conserving pseudopotentials for density functional calculations, we have successfully developed a design-carbon atom with five valence electrons. Tests on a series of molecules yield very good structural and energetic results and indicate its transferability in describing a variety of chemical bonds, including double and triple bonds. (C) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据