4.6 Article

Interactions between conserved domains within homodimers in the BIG1, BIG2, and GBF1 arf guanine nucleotide exchange factors

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 39, 页码 28834-28842

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M705525200

关键词

-

向作者/读者索取更多资源

Guanine nucleotide exchange factors carrying a Sec7 domain (ArfGEFs) activate the small GTP-binding protein Arf, a major regulator of membrane remodeling and protein trafficking in eukaryotic cells. Only two of the seven subfamilies of ArfGEFs (GBF and BIG) are found in all eukaryotes. In addition to the Sec7 domain, which catalyzes GDP/GTP exchange on Arf, the GBF and BIG ArfGEFs have five common homology domains. Very little is known about the functions of these noncatalytic domains, but it is likely that they serve to integrate upstream signals that define the conditions of Arf activation. Here we describe interactions between two conserved domains upstream of the Sec7 domain (DCB and HUS) that determine the architecture of the N-terminal regions of the GBF and BIG ArfGEFs using a combination of biochemical, yeast two-hybrid, and cellular assays. Our data demonstrate a strong interaction between DCB domains within GBF1, BIG1, and BIG2 to maintain homodimers and an interaction between DCB and HUS domains within each homodimer. The DCB/HUS interaction is mediated by the HUS box, the most conserved motif in large ArfGEFs after the Sec7 domain. In support of the in vitro data, we show that both the DCB and the HUS domains are necessary for GBF1 dimerization in mammalian cells and that the DCB domain is essential for yeast viability. We propose that the dimeric DCB-HUS structural unit exists in all members of the GBF and BIG ArfGEF groups and in the related Mon2p family and probably serves an important regulatory role in Arf activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据