4.8 Article

Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposites

期刊

BIOSENSORS & BIOELECTRONICS
卷 23, 期 2, 页码 168-175

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2007.03.028

关键词

polypyrrole; nanocomposite; tyrosinase; cytochrome c; glucose oxidase; enzyme biosensors

向作者/读者索取更多资源

This work describes development and optimization of a generic method for the immobilization of enzymes in chemically synthesized gold polypyrrole (Au-PPy) nanocomposite and their application in amperometric biosensors. Three enzyme systems have been used as model examples: cytochrome c, glucose oxidase and polyphenol oxidase. The synthesis and deposition of the nanocomposite was first optimized onto a glassy carbon electrode (GCE) and then, the optimum procedure was used for enzyme immobilization and subsequent fabrication of glucose and phenol biosensors. The resulting nanostructured polymer strongly adheres to the surface of the GCE electrode, has uniform distribution and is very stable. The method has proved to be an effective way for stable enzyme attachment while the presence of gold nanoparticles provides enhanced electrochemical activity; it needs very small amounts of pyrrole and enzyme and the Au-PPy matrix avoids enzyme leaking. The preparation conditions, Michaelis-Menten kinetics and analytical performance characteristics of the two biosensors are discussed. Optimization of the experimental parameters was performed with regard to pyrrole concentration, enzyme amount, pH and operating potential. These biosensors resulted in rapid, simple, and accurate measurement of glucose and phenol with high sensitivities (1.089 mA/M glucose and 497.1 mA/M phenol), low detection limits (2 x 10(-6) M glucose and 3 x 10(-8) M phenol) and fast response times (less than 10 s). The biosensors showed an excellent operational stability (at least 100 assays) and reproducibility (R.S.D. of 1.36%). (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据