4.7 Article

Numerical investigation of the solid particle erosion rate in a steam turbine nozzle

期刊

APPLIED THERMAL ENGINEERING
卷 27, 期 14-15, 页码 2394-2403

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2007.03.010

关键词

solid particle erosion; abrasive wear; steam turbine; numerical simulation

向作者/读者索取更多资源

A numerical investigation of solid particle erosion in the nozzle of 300 MW steam turbine is presented. The analysis consists in the application of the discrete phase model, for modelling the solid particles flow, and the Eulerian conservation equations to the continuous phase. The numerical study employs a computational fluid dynamics (CFD) software, based on a finite volume method. The investigation permits us to know the influence of the parameters such as: particle diameter, impact angle, particle velocity and particle distribution on the erosion rate in the surface of the nozzle. These parameters are analyzed to different operational conditions in the turbine. The results show the eroded zone which increases the throat area through the nozzle provoking changes in the operation conditions. When the throat area increases the turbine demands an increase of steam flow to maintain the power supply. On the other hand, it is shown that the solid particles flow cause the most severe the erosion rate whereas the steam mass flow rate is the most sensitive parameter. Finally it is obtained that the erosion rate decreases as the diameter of the particle increases in a nearly linear form. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据