4.3 Review

The genome and epigenome of malignant melanoma

期刊

APMIS
卷 115, 期 10, 页码 1161-1176

出版社

WILEY
DOI: 10.1111/j.1600-0463.2007.apm_855.xml.x

关键词

melanoma progression; genomics; epigenetics; promoter hypermethylation; signaling transduction; mutations

向作者/读者索取更多资源

Malignant melanoma originates in melanocytes, the pigment-producing cells of the skin and eye, and is one of the most deadly human cancers with no effective cure for metastatic disease. Like many other cancers, melanoma has both environmental and genetic components. For more than 20 years, the melanoma genome has been subject to extensive scrutiny, which has led to the identification of several genes that contribute to melanoma genesis and progression. Three molecular pathways have been found to be nearly invariably dysregulated in melanocytic tumors, including the RAS-RAF-MEK-ERK pathway (through mutation of BRAF, NRAS or KIT), the p16(INK4A)-CDK4-RB pathway (through mutation of INK4A or CDK4) and the ARF-p53 pathway (through mutation of ARF or TP53). Less frequently targeted pathways include the PI3K-AKT pathway (through mutation of NRAS, PTEN or PIK3CA) and the canonical Wnt signaling pathway (through mutation of CTNNBl or APC). Beyond the specific and well-characterized genetic events leading to activation of protooncogenes or inactivation of tumor suppressor genes in these pathways, systematic high-resolution genomic analysis of melanoma specimens has revealed recurrent DNA copy number aberrations as well as perturbations of DNA methylation patterns. Melanoma provides one of the best examples of how genomic analysis can lead to a better understanding of tumor biology. We review current knowledge of the genes involved in the development of melanoma and the molecular pathways in which these genes operate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据