4.5 Article

Enhanced relative BOLD signal changes in T2-weighted stimulated echoes

期刊

MAGNETIC RESONANCE IN MEDICINE
卷 58, 期 4, 页码 754-762

出版社

WILEY
DOI: 10.1002/mrm.21369

关键词

stimulated echo; fMRI; transverse relaxation; T-2; dynamic averaging

资金

  1. NCRR NIH HHS [P41 RR008079] Funding Source: Medline

向作者/读者索取更多资源

The origin of the stimulus/task-induced signal changes in spin echo (SE) functional MRI (fMRI) at high magnetic fields is dynamic averaging due to diffusion in the presence of field gradients surrounding deoxyhemoglobin-containing microvasculature. The same mechanism is expected to be operative in stimulated echoes (STE). Compared to SE-fMRI, however, STE-fMRI has the potential for larger diffusion weighting and consequently larger stimulus/task-induced signal changes as a result of an additional delay, the mixing time, T-M. In the present study, functional signal changes were quantified for both primary echo (PRE) and STE as a function of echo and mixing time. The relative blood oxygenation level dependent (BOLD) signal changes in STE were larger than in PRE at the same echo time and increased with both mixing and echo time. The contrast-to-noise ratio (CNR) of the STE, however, is close to the CNR of the PRE, indicating an increase of physiological noise with longer mixing times. In addition, the signal attenuation due to diffusion in the presence of magnetic field gradients near blood vessels was modeled using Monte Carlo simulations. They support the hypothesis that the sensitivity of the STE to fluctuations of susceptibility-induced magnetic field gradients near microvasculature is enhanced as a result of an extended diffusion time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据