4.7 Article

Vitrification from solution in restricted space: Formation and stabilization of amorphous nifedipine in a nanoporous silica xerogel carrier

期刊

INTERNATIONAL JOURNAL OF PHARMACEUTICS
卷 343, 期 1-2, 页码 131-140

出版社

ELSEVIER
DOI: 10.1016/j.ijpharm.2007.05.022

关键词

thermodynamics; nucleation; amorphous drugs; structural stabilization; porous carriers

向作者/读者索取更多资源

Purpose: The goal was to find thermodynamic criteria that must be satisfied in order to prevent formation of crystalline state of drugs within a confined space (e.g., nanopores of inorganic solid). Similarly, criteria that lead to stabilization of amorphous drug within such pores were investigated. Methods: In the theoretical part, the classical thermodynamics of nucleation is applied to the conditions of a restricted space. The theoretical findings are verified using porous silica as a carrier and nifedipine as a model drug. The amorphicity of the latter is checked using XRD and thermal analysis (DTA, DSC) in combination with BET measurements. Results: It is shown that there exists a critical pore radius of a host below which the entrapped substance will solidify in an amorphous form. There also exists a critical pore radius below which the entrapped amorphous solid will not be able to crystallize. Specifically, incorporation of NIF into a silica xerogel with an average pore diameter of about 2.5 nm produces and stabilizes its amorphous form. Conclusion: Entrapment of drugs into solid nanoporous carriers could be regarded as a potentially useful and simple method for production and/or stabilization of non-crystalline forms of a wide range of drugs. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据