4.3 Review

Neuronal calcium channels: Splicing for optimal performance

期刊

CELL CALCIUM
卷 42, 期 4-5, 页码 409-417

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceca.2007.04.003

关键词

calcium channel; N-type; Ca(V)2.2; Nociception; development; alternative splicing; modulation; Opioids; GABA; synprint

资金

  1. NINDS NIH HHS [NS055251, R01 NS029967-15, R01 NS055251, NS29967, R01 NS029967] Funding Source: Medline

向作者/读者索取更多资源

Calcium ion channels coordinate an astounding number of cellular functions. Surprisingly, only 10 Ca-v alpha(1) subunit genes encode the structural cores of all voltage-gated calcium channels. What mechanisms exist to modify the structure of calcium channels and optimize their coupling to the rich spectrum of cellular functions? Growing evidence points to the contribution of post-translational alternative processing of calcium channel RNA as the main mechanism for expanding the functional potential of this important gene family. Alternative splicing of RNA is essential during neuronal development where fine adjustments in protein signaling promote and inhibit cell-cell interactions and underlie axonal guidance. However, attributing a specific functional role to an individual splice isoform or splice site has been difficult. In this regard, studies of ion channels are advantageous because their function can be monitored with precision, allowing even subtle changes in channel activity to be detected. Such studies are especially insightful when coupled with information about isoform expression patterns and cellular localization. In this paper, we focus on two sites of alternative splicing in the N-type calcium channel Ca(v)2.2 gene. We first describe cassette exon 18a that encodes a 21 amino acid segment in the II-III intracellular loop region of Ca(v)2.2. Here, we show that e18a is upregulated in the nervous system during development. We discuss these new data in light of our previous reports showing that e18a protects the N-type channel from cumulative inactivation. Second, we discuss our published data on exons e37a and e376, which encode 32 amino acids in the intracellular C-terminus of Ca(v)2.2. These exons are expressed in a mutually exclusive manner. Exon e37a-containing Ca(v)2.2 mRNAs and their resultant channels express at higher density in dorsal root ganglia and, as we showed recently, e37a increases N-type channel sensitivity to G-protein-mediated inhibition, as compared to generic e37b-containing N-type channels. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据