4.7 Article

Effect of viscosity on droplet-droplet collision outcome: Experimental study and numerical comparison

期刊

PHYSICS OF FLUIDS
卷 19, 期 10, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2781603

关键词

-

向作者/读者索取更多资源

The influence of viscosity on droplet-droplet collision behavior at ambient conditions was studied experimentally and numerically. N-decane, monoethyleneglycol (MEG), diethyleneglycol (DEG), and triethyleneglycol were used as liquid phase providing viscosities in the range from 0.9 to 48 mPa s. Collision Weber numbers ranged approximately from 10 to 420. A direct numerical simulation code, based on the volume-of-fluid concept, was used for the simulations. Experimentally, observations of two droplet streams using a modified stroboscopic technique (aliasing method) were used to investigate the whole range of impact parameters during one experimental run. The experimental method has previously been verified for the water/air system [C. Gotaas et al., Phys. Fluids 19, 102105 (2007)]. In the present work, it was tested and validated for the n-decane/air system. Measured data agree well with those published in the literature. Well-defined regions of stretching separation and coalescence were identified, while reflexive separation regions were not found by using a single sinusoidal disturbance. However, the onset of reflexive separation was identified for MEG and DEG using an amplitude modulation technique. The results show that the criteria for onset of reflexive separation for viscous fluids provided by Y. I. Jiang et al. [J. Fluid Mech. 234, 177 (1992)] are not valid. This is consistent with the results given by K. D. Willis and M. Orme [Exp. Fluids 34, 28 (2003)]. A new empirical correlation for the onset of reflexive separation for high viscosity fluids is presented. The borders between coalescing and stretching separation were shifted toward higher Weber numbers with increasing viscosity. The lack of occurrence of reflexive separation for the single sinusoidal disturbance (small droplets), as well as the stretching separation boundary shift, can be explained by dissipation of collision kinetic energy in viscous flows inside the merged droplet after collision. Results from numerical simulations for MEG, DEG, and TEG correlated well with experimental data for the same fluids. (C) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据