4.6 Article

Effect of osmolarity on the zero-stress state and mechanical properties of aorta

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00402.2007

关键词

swelling; opening angle; elastic modulus; strain

资金

  1. NHLBI NIH HHS [2 R01 HL-055554-06] Funding Source: Medline

向作者/读者索取更多资源

Some pathological conditions may affect osmolarity, which can impact cell, tissue, and organ volume. The hypothesis of this study is that changes in osmolarity affect the zero-stress state and mechanical properties of the aorta. To test this hypothesis, a segment of mouse abdominal aorta was cannulated in vivo and mechanically distended by perfusion of physiological salt (NaCl) solutions with graded osmolarities from 145 to 562 mosM. The mechanical (circumferential stress, strain, and elastic modulus) and morphological (wall thickness and wall area) parameters in the loaded state were determined. To determine the osmolarity-induced changes of zero-stress state, the opening angle was observed by immersion of the sectors of mouse, rat, and pig thoracic aorta in NaCl solution with different osmolarities. Wall volume and tissue water content of the rings were also recorded at different osmolarities. Our results show that acute aortic swelling due to low osmolarity leads to an increase in wall thickness and area, a change in the stress-strain relationship, and an increase in the elastic modulus (stiffness) in mouse aorta. The opening angle, wall volume, and water content decreased significantly with increase in osmolarity. These findings suggest that acute aortic swelling and shrinking result in immediate mechanical changes in the aorta. Osmotic pressure-induced changes in the zero-stress state may serve to regulate mechanical homeostasis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据