4.5 Article

Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation

期刊

出版社

WILEY-LISS
DOI: 10.1002/jbm.a.31247

关键词

nanocomposite; bioceramic; biopolymer; surfactant; dispersion; fatty acid; bone regeneration

向作者/读者索取更多资源

The composite approach to combining bioactive ceramic and degradable polymer is a promising strategy in the development of bone regenerative matrices. Moreover, in the fabrication of composites, the nanoscale organization of each component should improve the level of structural integration as well as the resultant mechanical and biological properties. The aim of this study was to develop a novel nanocomposite system consisting of hydroxyapatite (HA) and poly(epsilon-caprolactone) (PCL), wherein the HA nanoparticles were uniformly dispersed within the PCL matrix. The strategy was based on applying an amphiphilic surfactant, oleic acid in this case, between the HA and PCL. Oleic acid, which belongs to the fatty acid family and is generally noncytotoxic at the levels used in this study, is believed to mediate the interaction between the hydrophilic HA and hydrophobic PCL. With the mediation of oleic acid, the HA nanoparticles were distributed uniformly within the PCL matrix on the nanoscale (distributed particle size of less than I pm), which is in marked contrast to the conventionally mixed HA-PCL composite, in which the HA particles were severely agglomerated. The developed nanocomposite had significantly higher mechanical strength than did the conventional composite and the pure PCL. Moreover, the osteoblastic cells showed a better proliferation behavior on the nanocomposite than on the conventional composite. This HA-PCL nanocomposite mediated by oleic acid is expected to be useful in the bone regeneration field. Moreover, this methodology is applicable to the nanocomposite processing of other biomedical materials. (c) 2007 Wiley Periodicals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据