4.3 Review

Insolation forcing of Holocene climate change in Southern California: a sediment study from Lake Elsinore

期刊

JOURNAL OF PALEOLIMNOLOGY
卷 38, 期 3, 页码 395-417

出版社

SPRINGER
DOI: 10.1007/s10933-006-9085-7

关键词

Holocene; Lake Elsinore; sediments; insolation

向作者/读者索取更多资源

Lake Elsinore is the largest natural lake in Southern California. As such, the lake provides a unique opportunity to investigate terrestrial climate on timescales otherwise underrepresented in the region's terrestrial environment. In November 2003, three similar to 10 m drill cores were extracted from the depocenter region of Lake Elsinore. These drill cores, spanning the past 9,500-11,200 calendar years, represent the first complete Holocene record of terrestrial climate from Southern California. In this paper, we focus on two adjacent, depocenter cores (LEGC03-2 and LEGC03-3), which have been correlated to develop a single composite core. Twenty-two AMS C-14 dates on bulk organic matter and one cross-correlated exotic pollen age constitute the composite core's age control. Several methods of analysis, including mass magnetic susceptibility, % total organic matter, % total carbonate, % HCl-extractable Al, and total inorganic P are used to infer climate for the past 9,500 calendar years in Southern California. Together, these data indicate a wet early Holocene followed by a long-term drying trend. Recent lake-level reconstructions from Owens Lake and Tulare Lake support our contention for a wetter-than-today early Holocene. Lacustrine sediments from the Mojave Desert also support our conclusions. We suggest that over the duration of the Holocene changing summer/winter insolation alters the region's long-term hydrologic balance through its modulation of atmospheric circulation and its associated storm tracks. Minimum early Holocene winter insolation and maximum summer insolation act together to increase the region's total annual precipitation by increasing the frequency of winter storms as well as enhancing the magnitude and spatial extent of the North American monsoon, the frequency of land-falling tropical cyclones in Southern California, and regional convective storms, respectively. Gradual decreases in summer insolation and increases in winter insolation produce the opposite effect with maximum drying in the late Holocene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据