4.8 Article

A new approach to the rationale discovery of polymeric biomaterials

期刊

BIOMATERIALS
卷 28, 期 29, 页码 4171-4177

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2007.06.022

关键词

biomaterials design; computational modeling; combinatorial synthesis; high-throughput experimentation

资金

  1. NHLBI NIH HHS [R01 HL060416-04] Funding Source: Medline
  2. NIBIB NIH HHS [P41 EB001046, EB001046, P41 EB001046-04] Funding Source: Medline

向作者/读者索取更多资源

This paper attempts to illustrate both the need for new approaches to biomaterials discovery as well as the significant promise inherent in the use of combinatorial and computational design strategies. The key observation of this Leading Opinion Paper is that the biomaterials community has been slow to embrace advanced biomaterials discovery tools such as combinatorial methods, high-throughput experimentation, and computational modeling in spite of the significant promise shown by these discovery tools in materials science, medicinal chemistry and the pharmaceutical industry. It seems that the complexity of living cells and their interactions with biomaterials has been a conceptual as well as a practical barrier to the use of advanced discovery tools in biomaterials science. However, with the continued increase in computer power, the goal of predicting the biological response of cells in contact with biomaterials surfaces is within reach. Once combinatorial synthesis, high-throughput experimentation, and computational modeling are integrated into the biomaterials discovery process, a significant acceleration is possible in the pace of development of improved medical implants, tissue regeneration scaffolds, and gene/drug delivery systems. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据