4.8 Article

Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme

向作者/读者索取更多资源

A novel nanoplasmonic sensing scheme is introduced based on remote real-time detection of induced electronic and shape/structural changes in a metal nanoparticle during the metal-hydride formation process. The localized surface plasmon resonance (LSPR) of the nanoparticle is utilized as signal transducer for optical readout. As a model system, hydrogen storage through metal-hydride formation is studied in Pd nanodisks. The experimentally obtained plasmonic response to hydrogen uptake yields pressure-LSPR-response isotherms. These isotherms are found to obey Sievert's law in the low-pressure range and exhibit a characteristic plateau at 18 Torr upon hydrogen charging and 7.5 Torr upon hydrogen discharging. An additional experiment also clearly shows the typical temperature dependence of the plateau pressure. Conversion of the LSPR signal to absolute hydrogen concentration, based on a proposed linear dependence of the LSPR response to hydrogen uptake, results in p-C isotherms in excellent agreement with those in the literature. This puts forward that the LSPR response is an extremely sensitive, remote, and real-time probe for bulk changes in a metal nanoparticle and can readily be used to study processes such as metal-hydride formation for hydrogen storage applications, alloying on the nanoscale, thermal reshaping, and so forth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据