4.4 Article

Chromosomal rearrangements in wheat: their types and distribution

期刊

GENOME
卷 50, 期 10, 页码 907-926

出版社

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/G07-072

关键词

tetraploid and hexaploid wheat; triticale; c-banding analysis; translocations; inversions; breakpoints

向作者/读者索取更多资源

Four hundred and sixty polyploid wheat accessions and 39 triticale forms from 37 countries of Europe, Asia, and USA were scored by C-banding for the presence of translocations. Chromosomal rearrangements were detected in 70 of 208 accessions of tetraploid wheat, 69 of 252 accessions of hexaploid wheat, and 3 of 39 triticale forms. Altogether, 58 types of major chromosomal rearrangements were identified in the studied material; they are discussed relative to 11 additional translocation types described by other authors. Six chromosome modifications of unknown origin were also observed. Among all chromosomal aberrations identified in wheat, single translocations were the most frequent type (39), followed by multiple rearrangements (9 types), pericentric inversions (9 types), and paracentric inversions (3 types). According to C-banding analyses, the breakpoints were located at or near the centromere in 60 rearranged chromosomes, while in 52 cases they were in interstitial chromosome regions. In the latter case, translocation breakpoints were often located at the border of C-bands and the euchromatin region or between two adjacent C-bands; some of these regions seem to be translocation hotspots. Our results and data published by other authors indicate that the B-genome chromosomes are involved in translocations most frequently, followed by the A- and D-genome chromosomes; individual chromosomes also differ in the frequencies of translocations. Most translocations were detected in I or 2 accessions, and only I I variants showed relatively high frequencies or were detected in wheat varieties of different origins or from different species. High frequencies of some translocations with a very restricted distribution could be due to a bottleneck effect. Other types seem to occur independently and their broad distribution can result from selective advantages of rearranged genotypes in diverse environmental conditions. We found significant geographic variation in the spectra and frequencies of translocation in wheat: the highest proportions of rearranged genotypes were found in Central Asia, the Middle East, Northern Africa, and France. A low proportion of aberrant genotypes was characteristic of tetraploid wheat from Transcaucasia and hexaploid wheat from Middle Asia and Eastern Europe.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据