4.4 Article

Micro air bubble formation and its control during polymerase chain reaction (PCR) in polydimethylsiloxane (PDMS) microreactors

期刊

JOURNAL OF MICROMECHANICS AND MICROENGINEERING
卷 17, 期 10, 页码 2055-2064

出版社

IOP Publishing Ltd
DOI: 10.1088/0960-1317/17/10/018

关键词

-

向作者/读者索取更多资源

Air bubble formation during polymerase chain reaction (PCR) thermocycling in microreactors has been reported as one of the major causes for PCR failure. In this paper we investigate the locations, mechanisms and other characteristics of the micro bubble formation inside a PCR microreactor array chip made by polydimethylsiloxane ( PDMS) bonded with glass. The bubble formation is found to be strongly related to the micro features inside the microreactors and inside the chip bonding interface, especially near the inner corners of the microreactors, which are dependent on the micro-fabrication methods used. Gas permeability of PDMS and the wetting property of PCR sample also have influence on the air bubble formation. After investigation of various methods to control the bubble formation, we present the two most viable ones through micro bubble absorption and chip bonding interface modification. Finally, a bubble-free PCR in PDMS microreactors is demonstrated, in which the micro bubbles are suppressed with a bonding interface cladding technique.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据