4.6 Article

Application of photocatalytic technology for NOx removal

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00339-007-4033-6

关键词

-

向作者/读者索取更多资源

Materials that contain a photocatalyst have a semi-permanent capacity for removing harmful gases from the ambient air. It is the purpose of this study to investigate the photocatalytic activity of commercial paints containing TiO2 nanoparticles towards NO and NO2. Experiments were carried out in a stainless steel (30 m(-3)) walk-in type environmental chamber (Indoortron), under real world setting conditions of temperature, relative humidity, irradiation and pollutant concentrations. Two types of nanoparticle TiO2-containing paints were tested for their depolluting properties: a mineral silicate paint and a water-based styrene acrylic paint. The results showed a significant effect of TiO2-materials in reducing NOx. It was found that up to 74% of NO and 27% of NO2 were photo-catalytically degraded by the mineral silicate paint, while degradation percentage using the styrene acrylic paint reached 91% and 71% for NO and NO2, respectively. The photo-catalytic rate of NO on the mineral and styrene acrylic paint was calculated to 0.11 mu g m(-2) s and 0.18 mu g m(-2)s, respectively, indicating higher photocatalytic performance of the organic based material. The effect of relative humidity (RH) was also investigated. An increase of RH from 20% to 50% inhibited the NOx photocatalysis on the surface of the samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据