4.7 Article

Silencing of caspase-8 and caspase-3 by RNA interference prevents vascular endothelial cell injury in mice with endotoxic shock

期刊

CARDIOVASCULAR RESEARCH
卷 76, 期 1, 页码 132-140

出版社

OXFORD UNIV PRESS
DOI: 10.1016/j.cardiores.2007.05.024

关键词

Akt; apoptosis; endothelium; endothelial nitric oxide synthase; phosphatidylinositol 3-kinase; endotoxic shock; small interfering RNA

向作者/读者索取更多资源

Objectives: Septic shock and sequential multiple organ failure remain the cause of death in septic patients. Vascular endothelial cell apoptosis may play a role in the pathogenesis of the septic syndrome. Caspase-8 is presumed to be the apex of the death receptor-mediated apoptosis pathway, whereas caspase-3 belongs to the effector protease in the apoptosis cascade. Synthetic small interfering RNAs (siRNAs) specifically suppress gene expression by RNA interference. Therefore, we evaluated the therapeutic efficacy of caspase-8/caspase-3 siRNAs in a murine model of polymicrobial endotoxic shock. Methods: Polymicrobial endotoxic shock was induced by cecal ligation and puncture (CLP) in BALB/c mice. In vivo delivery of siRNAs was performed by using a transfection reagent (Lipofectamine 2000) at 10 h after CLP. As a negative control, animals received non-sense (scrambled) siRNA. Results: Marked increases in caspase-8 and caspase-3 protein expression in CLP aortic tissues were strongly suppressed by treatment with caspase-8/caspase-3 siRNAs. This siRNA treatment prevented DNA ladder formation and less phosphorylation of the pro-apoptotic protein Bad seen in CLP aortic tissues. Transferase-mediated dUTP nick end labeling (TUNEL) revealed that the appearance of apoptosis in aortic endothelium after CLP was eliminated by this siRNA treatment. Although all of the control animals subjected to CLP died within 2 days, administration of caspase-8/caspase-3 siRNAs indefinitely (>7 days) improved the survival of CLP mice. Conclusions: Gene silencing of caspase-8 and caspase-3 with siRNAs provided profound protection against polymicrobial endotoxic shock. The prevention of vascular endothelial cell apoptosis appears to be, at least in part, responsible for their beneficial effects in endotoxic shock. (C) 2007 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据