4.7 Article

A novel major groove binding site in B-form DNA for ethidium cation

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2007.10507160

关键词

-

向作者/读者索取更多资源

A stably-bound external binding site for ethidium cation in the major groove of 13-form DNA is proposed. This complex is stabilized by hydrogen bonding between this ligand and the nucleophilic centers 06 and N7 of guanine, both of which are accessible via the major groove. This binding site is not the same as the well-characterized electrostatically-stabilized external binding site, but rather is seen to be a covalently bound complex which is stabilized by two hydrogen bonds between the ethidium ligand and guanine in the double stranded (ds) 13-form DNA. This site [(I), R. Monaco, F. Hasheer. J Biomol Struct Dyn 10, 675 (1993)] can only exist at very low occupancy ratios. The existence of this binding site leads directly to the expectation that there will exist particular mechanistic steps along the pathway of interaction between ethidium and ds B-DNA at low and high ligand concentrations that involve this binding mode. This would not only explain observations published recently [for example, see (2-6), W. Wilson, I. Lopp. Biopolymers 18, 3025 (1979); L. Wakelin, M. Waring. J Mol Biol 144, 183-214 (1980); A. Karpetyan, N. Mehrabian, G. Terzikian, A. Antonian, R Vardevanian, M. Frank-Kamenetshii. Proceedings of the 10th Conversation, SUNY Albany, 275 (1998); P. Vardevanyan, A. Antonyan, G. Manukyan, A. Karapetyan. Experimental and Molecular Medicine 33, 205 (200 1); P. Vardevanyan, A. Antonyan, L. Minasbekan, A. Karapetyan. Proceedings of the 2002 Miami Nature Biotechnology Winter Symposium, 2(S 1), 144 (2002)] but also give insight into discrepancies reported in the literature over the years by different workers studying the mechanism of interaction between ethidium and DNA. In this paper this novel binding interaction is discussed, and it is shown how the elucidation of this interaction led to the proposal of two distinct mechanisms of intercalation between ds B-DNA and ethidium cation for high and low concentrations of ligand. Modeling studies show the stability, configuration, and relative energies of this outside binding site. It is expected that this externally bound complex between ethidium cation and ds B-form DNA will be experimentally detectable using fluorescent polarization and/or linear and circular dichroism spectroscopic studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据