4.6 Article

Thermodynamics of L10 ordering in FePt nanoparticles studied by Monte!Carlo simulations based on an analytic bond-order potential

期刊

PHYSICAL REVIEW B
卷 76, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.155412

关键词

-

向作者/读者索取更多资源

The size dependence of the order-disorder transition in FePt nanoparticles with an L1(0) structure is investigated by means of Monte Carlo simulations based on an analytic bond-order potential for FePt. A cross parametrization for the Fe-Pt interaction is proposed, which complements existing potentials for the constituents Fe and Pt. This FePt potential properly describes structural properties of ordered and disordered phases, surface energies, and the L1(0) to A1 transition temperature in bulk FePt. The potential is applied for examining the ordering behavior in small particles. The observed lowering of the order-disorder transition temperature with decreasing particle size confirms previous lattice-based Monte Carlo simulations [M. Muller and K. Albe, Phys. Rev. B 72, 094203 (2005)]. Although a distinctly higher amount of surface induced disorder is found in comparison to previous studies based on lattice-type Hamiltonians, the presence of lattice strain caused by the tetragonal distortion of the L1(0) structure does not have a significant influence on the depression of the ordering temperature with decreasing particle size.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据