4.5 Article

Thermal response of Langmuir-Blodgett films of dipalmitoylphosphatidylcholine studied by atomic force microscopy and force spectroscopy

期刊

BIOPHYSICAL JOURNAL
卷 93, 期 8, 页码 2713-2725

出版社

CELL PRESS
DOI: 10.1529/biophysj.107.110916

关键词

-

向作者/读者索取更多资源

The topographic evolution of supported dipalmitoylphosphatidylcholine (DPPC) monolayers with temperature has been followed by atomic force microscopy in liquid environment, revealing the presence of only one phase transition event at similar to 46 degrees C. This finding is a direct experimental proof that the two phase transitions observed in the corresponding bilayers correspond to the individual phase transition of the two leaflets composing the bilayer. The transition temperature and its dependency on the measuring medium (liquid saline solution or air) is discussed in terms of changes in van der Waals, hydration, and hydrophobic/hydrophilic interactions, and it is directly compared with the transition temperatures observed in the related bilayers under the same experimental conditions. Force spectroscopy allows us to probe the nanomechanical properties of such monolayers as a function of temperature. These measurements show that the force needed to puncture the monolayers is highly dependent on the temperature and on the phospholipid phase, ranging from 120 +/- 4 pN at room temperature (liquid condensed phase) to 49 +/- 2 pN at 65 degrees C (liquid expanded phase), which represents a two orders-of-magnitude decrease respective to the forces needed to puncture DPPC bilayers. The topographic study of the monolayers in air around the transition temperature revealed the presence of boundary domains in the monolayer surface forming 120 degrees angles between them, thus suggesting that the cooling process from the liquid-expanded to the liquid-condensed phase follows a nucleation and growth mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据