4.6 Article

Metabolism and short-term metabolic effects of conjugated linoleic acids in rat hepatocytes

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbalip.2007.08.005

关键词

Acetyl-CoA carboxylase; carnitine palinitoyltransferase-I; conjugated linoleic acid; linoleic acid; mitochondria; peroxisomes

向作者/读者索取更多资源

Metabolic fate and short-term effects of a 1:1 mixture of cis-9,trans-11 and trans-10,cis-12-conjugated linoleic acids (CLA), compared to linoleic acid (LA), on lipid metabolism was investigated in rat liver. In isolated mitochondria CLA-CoA were poorer substrates than LA-CoA for carnitine palmitoyltransferase-I (CPT-I) activity. However, in digitonin-penneabilized hepatocytes, where interactions among different metabolic pathways can be simultaneously investigated, CLA induced a remarkable stimulatory effect on CPT-I activity. This stimulation can be ascribed to a reduced malonyl-CoA level in turn due to inhibition of acetyl-CoA carboxylase (ACC) activity. The ACC/malonyl-CoA/CPT-1 system can therefore represent a coordinate control by which CLA may exert effects on the partitioning of fatty acids between esterification and oxidation. Moreover, the rate of oxidation to CO2 and ketone bodies was significantly higher from CLA; peroxisomes rather than mitochondria were responsible for this difference. Interestingly, peroxisomal acyl-CoA oxidase (AOX) activity strongly increased by CLA-CoA compared to LA-CoA. CLA, metabolized by hepatocytes at a higher rate than LA, were poorer substrates for cellular and VLDL-triacylglycerol (TAG) synthesis. Overall, our results suggest that increased fatty acid oxidation with consequent decreased fatty acid availability for TAG synthesis is a potential mechanism by which CLA reduce TAG level in rat liver. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据