4.5 Article

The small molecule NS11021 is a potent and specific activator of Ca2+-activated big-conductance K+ channels

期刊

MOLECULAR PHARMACOLOGY
卷 72, 期 4, 页码 1033-1044

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.107.038331

关键词

-

向作者/读者索取更多资源

Large-conductance Ca2+-and voltage-activated K+ channels (Kca1.1/BK/MaxiK) are widely expressed ion channels. They provide a Ca2+-dependent feedback mechanism for the regulation of various body functions such as blood flow, neurotransmitter release, uresis, and immunity. In addition, a mitochondrial K+ channel with KCa1.1-resembling properties has been found in the heart, where it may be involved in regulation of energy consumption. In the present study, the effect of a novel NeuroSearch compound, 1-(3,5-bis-trifluoromethyl-phenyl)-3[4-bromo-2-(1H- tetrazol- 5- yl)- phenyl]- thiourea (NS11021), was investigated on cloned KCa1.1 expressed in Xenopus laevis oocytes and mammalian cells using electrophysiological methods. NS11021 at concentrations above 0.3 mu M activated KCa1.1 in a concentration-dependent manner by parallel-shifting the channel activation curves to more negative potentials. Single-channel analysis revealed that NS11021 increased the open probability of the channel by altering gating kinetics without affecting the single-channel conductance. NS11021 (10 mu M) influenced neither a number of cloned Kv channels nor endogenous Na+ and Ca2+ channels (L- and T-type) in guinea pig cardiac myocytes. In conclusion, NS11021 is a novel KCa1.1 channel activator with better specificity and a 10 times higher potency compared with the most broadly applied KCa1.1 opener, NS1619. Thus, NS11021 might be a valuable tool compound when addressing the physiological and pathophysiological roles of KCa1.1 channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据