4.3 Article

Visual gamma oscillations: waves, correlations, and other phenomena, including comparison with experimental data

期刊

BIOLOGICAL CYBERNETICS
卷 97, 期 4, 页码 317-335

出版社

SPRINGER
DOI: 10.1007/s00422-007-0177-x

关键词

-

向作者/读者索取更多资源

Mean-field theory of brain dynamics is applied to explain the properties of gamma (greater than or similar to 30Hz) oscillations of cortical activity often seen during vision experiments. It is shown that mm-scale patchy connections in the primary visual cortex can support collective gamma oscillations with the correct frequencies and spatial structure, even when driven by uncorrelated inputs. This occurs via resonances associated with the the periodic modulation of the network connections, rather than being due to single-cell properties alone. Near-resonant gamma waves are shown to obey the Schrodinger equation, which enables techniques and insights from quantum theory to be used in exploring these classical oscillations. Resulting predictions for gamma responses to stimuli account in a unified way for a wide range of experimental results, including why oscillations and zero-lag synchrony are associated, and variations in correlation functions with time delay, intercellular distance, and stimulus features. They also imply that gamma oscillations may enable a form of frequency multiplexing of neural signals. Most importantly, it is shown that correlations reproduce experimental results that show maximal correlations between cells that respond to related features, but little correlation with other cells, an effect that has been argued to be associated with segmentation of a scene into separate objects. Consistency with infill of missing contours and increase in response with length of bar-shaped stimuli are discussed. Background correlations expected in the absence of stimulation are also calculated and shown to be consistent in form with experimental measurements and similar to stimulus-induced correlations in structure. Finally, possible links of gamma instabilities to certain classes of photically induced seizures and visual hallucinations are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据