4.7 Article

Protein solubility: sequence based prediction and experimental verification

向作者/读者索取更多资源

Motivation: Obtaining soluble proteins in sufficient concentrations is a recurring limiting factor in various experimental studies. Solubility is an individual trait of proteins which, under a given set of experimental conditions, is determined by their amino acid sequence. Accurate theoretical prediction of solubility from sequence is instrumental for setting priorities on targets in large-scale proteomics projects. Results: We present a machine-learning approach called PROSO to assess the chance of a protein to be soluble upon heterologous expression in Escherichia coli based on its amino acid composition. The classification algorithm is organized as a two-layered structure in which the output of primary support vector machine (SVM) classifiers serves as input for a secondary Naive Bayes classifier. Experimental progress information from the TargetDB database as well as previously published datasets were used as the source of training data. In comparison with previously published methods our classification algorithm possesses improved discriminatory capacity characterized by the Matthews Correlation Coefficient (MCC) of 0.434 between predicted and known solubility states and the overall prediction accuracy of 72% (75 and 68% for positive and negative class, respectively). We also provide experimental verification of our predictions using solubility measurements for 31 mutational variants of two different proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据