4.6 Article

Luminescence decays with underlying distributions: General properties and analysis with mathematical functions

期刊

JOURNAL OF LUMINESCENCE
卷 126, 期 2, 页码 263-272

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jlumin.2006.07.004

关键词

luminescence decay law; distribution of lifetimes; stretched exponential decay; kohlrausch decay; Becquerel decay; truncated gaussian distribution

类别

向作者/读者索取更多资源

In this work, an analysis of the general properties of the luminescence decay law is carried out. The conditions that a luminescence decay law must satisfy in order to correspond to a probability density function of rate constants are established. From an analysis of the general form of the luminescence decay law, it is concluded that the decay must be either exponential or sub-exponential for all times, in order to be represented by a distribution of rate constants H(k). Sub-exponentiality is nevertheless not a sufficient condition. Only decays that are completely monotonic have a probability density function of rate constants. The construction of the decay function from cumulant and moment expansions is studied, as well as the corresponding calculation of H(k) from a cumulant expansion. The asymptotic behavior of the decay laws is considered in detail, and the relation between this behavior and the form of H(k) for small k is explored. Several generalizations of the exponential decay function, namely the Kohlrausch, Becquerel, Mittag-Leffler and Heaviside decay functions, as well as the Weibull and truncated Gaussian rate constant distributions are discussed. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据