4.7 Article

Emergence of singular structures in Oldroyd-B fluids

期刊

PHYSICS OF FLUIDS
卷 19, 期 10, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2783426

关键词

-

资金

  1. Direct For Mathematical & Physical Scien [0757813] Funding Source: National Science Foundation
  2. Division Of Mathematical Sciences [0757813] Funding Source: National Science Foundation

向作者/读者索取更多资源

Numerical simulations reveal the formation of singular structures in the polymer stress field of a viscoelastic fluid modeled by the Oldroyd-B equations driven by a simple body force. These singularities emerge exponentially in time at hyperbolic stagnation points in the flow and their algebraic structure depends critically on the Weissenberg number. Beyond a first critical Weissenberg number the stress field approaches a cusp singularity, and beyond a second critical Weissenberg number the stress becomes unbounded exponentially in time. A local approximation to the solution at the hyperbolic point is derived from a simple ansatz, and there is excellent agreement between the local solution and the simulations. Although the stress field becomes unbounded for a sufficiently large Weissenberg number, the resultant forces of stress grow subexponentially. Enforcing finite polymer chain lengths via a FENE-P penalization appears to keep the stress bounded, but a cusp singularity is still approached exponentially in time. (C) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据