4.7 Article

MR diffusion changes correlate with ultra-structurally defined axonal degeneration in murine optic nerve

期刊

NEUROIMAGE
卷 37, 期 4, 页码 1138-1147

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2007.06.029

关键词

MRI; diffusion weighted imaging; principal diffusivities; axonal injury; optic neuritis

向作者/读者索取更多资源

Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) are widely used to investigate central nervous system (CNS) white matter structure and pathology. Changes in principal diffusivities parallel and perpendicular to nerve fibers or axonal tracts have been associated with axonal pathology and de/dysmyelination respectively. However, the ultra-structural properties and the pathological alterations of white matter responsible for diffusivity changes have not been fully elucidated. We examined the relationship between the directional diffusivities and ultra-structural properties in mouse optic nerve using healthy animals, and mice with optic neuritis (ON) that exhibited marked inflammatory changes and moderately severe axonal pathology. Progressive axonal degeneration in ON resulted in a 23% reduction of parallel diffusivity as detected by diffusion MRI (p< 10(-5)), but no change in perpendicular diffusivity. Parallel diffusion changes were highly correlated with the total axolemmal cross-sectional area in the pre-chiasmal portion of the optic nerve (r=0.86, P<0.001). This study provides quantitative evidence that reduced parallel diffusivity in the optic nerve correlates significantly with axolemmal cross-sectional area reductions. MRI-based assessment of axonal degeneration in murine ON is feasible and potentially useful for monitoring of neuroprotective therapies in preclinical trials in animals. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据