3.8 Article Proceedings Paper

Mechanisms of calcium-induced mitochondrial biogenesis and GLUT4 synthesis

出版社

CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS
DOI: 10.1139/H07-062

关键词

-

向作者/读者索取更多资源

Regularly performed aerobic exercise leads to increases in skeletal muscle mitochondria and glucose transporter 4 (GLUT4) protein content, resulting in an enhanced capacity to oxidize substrates and improvements in insulin- and contraction-mediated glucose uptake. Although the specific mechanisms governing these adaptive responses have not been fully elucidated, accumulating evidence suggests that the increase in cytosolic Ca(2+) that occurs with each wave of sacrolemmal depolarization is a key component of these processes. Treating L6 muscle cells with agents that increase Ca(2+) without causing reductions in similar to P or the activation of 5'-AMP-activated protein kinase leads to increases in GLUT4 and mitochondrial protein contents. This effect is likely controlled through calcium/calmodulin-dependent protein kinase (CaMK), since KN93, a specific CaMK inhibitor, blocks these adaptive responses. Recent findings provide evidence that the activation of p38 mitogen-activated protein kinase (MAPK) is involved in the pathway through which Cat(2+)/CaMK mediates mitochondrial and GLUT4 biogenesis. p38 MAPK initiates GLUT4 and mitochondrial biogenesis through the activation of transcription factors and transcriptional coactivators such as myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor gamma coactivator l alpha (PGC-l alpha). Subsequent increases in the content of these proteins further enhance Ca(2+)-induced GLUT4 and mitochondrial biogenesis. Since decreases in mitochondrial and GLUT4 contents are associated with skeletal muscle insulin resistance, an understanding of the mechanisms by which these processes can be normalized will aid in the prevention and treatment of type 2 diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据