4.6 Article

Proteomic identification of differently expressed proteins responsible for osteoblast differentiation from human mesenchymal stem cells

期刊

MOLECULAR AND CELLULAR BIOCHEMISTRY
卷 304, 期 1-2, 页码 167-179

出版社

SPRINGER
DOI: 10.1007/s11010-007-9497-3

关键词

differential protein expression; human mesenchymal stem cells; osteoblast differentiation; proteomics; 2-DE

向作者/读者索取更多资源

Human mesenchymal stem cells (hMSC) are a population of multipotent cells that can differentiate into osteoblasts, chondrocytes, adipocytes, and other cells. The exact mechanism governing the differentiation of hMSC into osteoblasts remains largely unknown. Here, we analyzed protein expression profiles of undifferentiated as well as osteogenic induced hMSC using 2-D gel electrophoresis (2-DE), mass spectrometry (MS), and peptide mass fingerprinting (PMF) to investigate the early gene expression in osteoblast differentiation. We have generated proteome maps of undifferentiated hMSC and osteogenic induced hMSC on day 3 and day 7. 2-DE revealed 102 spots with at least 2.0-fold changes in expression and 52 differently expressed proteins were successfully identified by MALDI-TOF-MS. These proteins were classified into 7 functional categories: metabolism, signal transduction, transcription, calcium-binding protein, protein degradation, protein folding and others. The expression of some identified proteins was confirmed by further RT-PCR analyses. This study clarifies the global proteome during osteoblast differentiation. Our results will play an important role in better elucidating the underlying molecular mechanism in hMSC differentiation into osteoblasts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据