4.8 Article

A model for the role of integrins in flow induced mechanotransduction in osteocytes

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0707246104

关键词

bone mechanotransduction; integrin attachments; osteocyte cell process; strain amplification; bone fluid flow

资金

  1. NIAMS NIH HHS [AR48699, AR41210, R01 AR048699, R01 AR041210] Funding Source: Medline

向作者/读者索取更多资源

A fundamental paradox in bone mechanobiology is that tissue-level strains caused by human locomotion are too small to initiate intracellular signaling in osteocytes. A cellular-level strain-amplification model previously has been proposed to explain this paradox. However, the molecular mechanism for initiating signaling has eluded detection because none of the molecules in this previously proposed model are known mediators of intracellular signaling. In this paper, we explore a paradigm and quantitative model for the initiation of intracellular signaling, namely that the processes are attached directly at discrete locations along the canalicular wall by beta(3) integrins at the apex of infrequent, previously unrecognized canalicular projections. Unique rapid fixation techniques have identified these projections and have shown them to be consistent with other studies suggesting that the adhesion molecules are alpha(v)beta(3) integrins. Our theoretical model predicts that the tensile forces acting on the integrins are <15 pN and thus provide stable attachment for the range of physiological loadings. The model also predicts that axial strains caused by the sliding of actin microfilaments about the fixed integrin attachments are an order of magnitude larger than the radial strains in the previously proposed strain-amplification theory and two orders of magnitude greater than whole-tissue strains. In vitro experiments indicated that membrane strains of this order are large enough to open stretch-activated cation channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据