4.6 Article

Sorafenib functions to potently suppress RET tyrosine kinase activity by direct enzymatic inhibition and promoting RET lysosomal degradation independent of proteasomal targeting

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 40, 页码 29230-29240

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M703461200

关键词

-

资金

  1. Medical Research Council [G0100471] Funding Source: Medline
  2. Breast Cancer Now [BREAST CANCER NOW RESEARCH CENTRE] Funding Source: Medline
  3. Medical Research Council [G0100471] Funding Source: researchfish
  4. MRC [G0100471] Funding Source: UKRI

向作者/读者索取更多资源

Germ line missense mutations in the RET (rearranged during transfection) oncogene are the cause of multiple endocrine neoplasia, type 2 (MEN2), but at present surgery is the only treatment available for MEN2 patients. In this study, the ability of Sorafenib (BAY 43-9006) to act as a RET inhibitor was investigated. Sorafenib inhibited the activity of purified recombinant kinase domain of wild type RET and RETV804M with IC50 values of 5.9 and 7.9 nM, respectively. Interestingly, these values were 6-7-fold lower than the IC50 for the inhibition of B-RAF(V600E). In cell-based assays, Sorafenib inhibited the kinase activity and signaling of wild type and oncogenic RET in MEN2 tumor and established cell lines at a concentration between 15 and 150 nM. In contrast, inhibition of oncogenic B-RAF- or epidermal growth factor-induced ERK1/2 phosphorylation required micromolar concentrations of Sorafenib demonstrating the high specificity of this drug in targeting RET. Moreover, prolonged exposure to Sorafenib resulted in inhibition of cell proliferation and RET protein degradation. Using lysosomal and proteasomal inhibitors, we demonstrate that Sorafenib induces RET lysosomal degradation independent of proteasomal targeting. Furthermore, we provide a structural model of the Sorafenib center dot RETcomplex in which Sorafenib binds to and induces the DFG(out) conformation of the RET kinase domain. These results strengthen the argument that Sorafenib may be effective in the treatment of MEN2 patients. In addition, because inhibition of RET is not impaired by mutation of the Val(804) gatekeeper residue, MEN2 tumors may be less susceptible to acquired Sorafenib resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据