4.6 Article

Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning

期刊

PHYSICS IN MEDICINE AND BIOLOGY
卷 52, 期 19, 页码 5897-5907

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0031-9155/52/19/011

关键词

-

向作者/读者索取更多资源

The author describes a Fourier domain optical coherence tomography (FDOCT) system that is capable of full range complex imaging in vivo. This is achieved by introducing a constant carrier frequency into the OCT spectral interferograms at the time when imaging is performed. The complex functions of the spatial interferograms formed by each single wavelength are constructed before performing the Fourier transformation to localize the scatters within a sample. Two algorithms, based on Fourier filtering and Hilbert transformation, respectively, are described to achieve the full range complex FDOCT imaging. It is shown that the Hilbert transformation approach delivers better performance than the Fourier filtering method does in terms of tolerating the sample movement in vivo. The author finally demonstrates experimentally the system and algorithms for true in vivo imaging at a rate of 20 000 axial scans per second.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据