4.7 Article

The thermal structure of the circumstellar disk surrounding the classical Be star γ Cassiopeiae

期刊

ASTROPHYSICAL JOURNAL
卷 668, 期 1, 页码 481-491

出版社

IOP PUBLISHING LTD
DOI: 10.1086/521209

关键词

circumstellar matter; stars : emission-line, Be; stars : individual (gamma Cassiopeiae)

向作者/读者索取更多资源

We have computed radiative equilibrium models for the gas in the circumstellar envelope surrounding the hot, classical Be star gamma Cassiopeiae. This calculation is performed using a code that incorporates a number of improvements over previous treatments of the disk's thermal structure by Millar & Marlborough and Jones et al.; most importantly, heating and cooling rates are computed with atomic models for H, He, CNO, Mg, Si, Ca, and Fe and their relevant ions. Thus, for the first time, the thermal structure of a Be disk is computed for a gas with a solar chemical composition as opposed to assuming a pure hydrogen envelope. We compare the predicted average disk temperature, the total energy loss in H alpha, and the near-IR excess with observations and find that all can be accounted for by a disk that is in vertical hydrostatic equilibrium with a density in the equatorial plane of rho(R) approximate to (3-5) x 10(-11) (R/R*)(-2.5) g cm(-3). We also discuss the changes in the disk's thermal structure that result from the additional heating and cooling processes available to a gas with a solar chemical composition over those available to a pure hydrogen plasma.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据