4.7 Article

Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 34, 期 19, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2007GL030021

关键词

-

向作者/读者索取更多资源

[1] Subgrid-scale cloud condensation nuclei (CCN) heterogeneity is not represented in global climate models (GCM) and potentially contributes systematic errors to simulated cloud effects. High-resolution WRF-Chem model simulations were performed to investigate the impact of assuming a uniform CCN distribution on cloud properties and surface radiation over a region the size of a GCM grid column. Results indicate that a prescribed CCN distribution allowing for vertical and temporal fluctuations does substantially better in simulating cloud properties and radiative effects than does a prescribed uniform and constant CCN distribution. Spatially and temporally averaged net effects on downwelling shortwave radiation are between -3 and -11 W m -2 for the fluctuating and uniform distributions, respectively, versus a control simulation with fully interactive aerosols. Both prescribed CCN distributions produce optically thicker clouds more often than the control, with the mean cloud optical depth increasing by over 25% when using the uniform and constant CCN distribution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据