4.7 Article

Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer

期刊

INTERNATIONAL JOURNAL OF CANCER
卷 121, 期 8, 页码 1830-1838

出版社

WILEY
DOI: 10.1002/ijc.22886

关键词

ovarian cancer; drug resistance; paclitaxel; C-6-ceramide; biodegradable polymeric nanoparticles; poly(ethylene oxide)-modified poly(epsilon-caprolactone)

类别

资金

  1. NCI NIH HHS [R01-CA119617] Funding Source: Medline

向作者/读者索取更多资源

The objective of this study was to overcome drug resistance upon systemic administration of combination paclitaxel (PTX) and the apoptotic signaling molecule C-6-ceramide (CER) in biodegradable poly(ethylene oxide)-modified poly(epsilon-caprolactone (PEO-PCL) nanoparticles. Subcutaneous sensitive (wild-type) and multidrug resistant (MDR-1 positive) SKOV-3 human ovarian adenocarcinoma xenografts were established in female Nu/Nu mice. PTX and CER were administered intravenously either as a single agent or in combination in aqueous solution and in PEO-PCL nanoparticles to the tumor-bearing mice. There was significant (p < 0.05) tumor growth suppression in both wild-type SKOV-3 and multidrug resistant SKOV-3(TR) models upon single dose co-administration of PTX (20 mg/kg) and CER (100 mg/kg) in nanoparticle formulations as compared to the individual agents and administration in aqueous solutions. For instance, in SKOV-3 wild-type model, more than 4.3-fold increase (p < 0.05) in tumor growth delay and 3.6-fold (p < 0.05) increase in tumor volume doubling time (DT) were observed with the combination treatment in nanoparticles as compared to untreated animals. Similarly, 3-fold increase (p < 0.05) in tumor growth delay and tumor volume DT was observed in SKOV-3(TR) model. Body weight changes and blood cells counts were used as measures of safety and, except for an increase in platelet counts (p < 0.05) in PTX + CER treated animals, there was no difference between various treatment strategies. The results of this study show that combination of PTX and CER in biodegradable polymeric nanoparticles can serve as a very effective therapeutic strategy to overcome drug resistance in ovarian cancer. (C) 2007 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据