4.7 Article

Soil and crop response to harvesting corn residues for biofuel production

期刊

GEODERMA
卷 141, 期 3-4, 页码 355-362

出版社

ELSEVIER
DOI: 10.1016/j.geoderma.2007.06.012

关键词

corn stover; soil organic carbon; biofuel production; crop yield; soil compaction

向作者/读者索取更多资源

Corn (Zea mays L.) stover is considered one of the prime lignocellulosic feedstocks for biofuel production. While producing renewable energy from biomass is necessary, impacts of harvesting corn stover on soil organic carbon (SOC) sequestration, agricultural productivity, and environmental quality must be also carefully and objectively assessed. We conducted a 2 1/2 year study of stover management in long-term (> 8 yr) no-tillage (NT) continuous corn systems under three contrasting soils in Ohio to determine changes in SOC sequestration, CO2 emissions, soil physical properties, and agronomic productivity. These measurements were made on a Rayne silt loam (RSL) (fine-loamy, mixed, active, mesic Typic Hapludult) with 6% slope, Celina silt loam (CSL) (fine, mixed, active, mesic Aquic Hapludalfs) with 2% slope, and Hoytville clay loam (HCL) (fine, illitic, mesic Mollic Epiaqualfs) with < 1% slope. Stover treatments consisted of removing 0, 25, 50, 75, and 100% of corn stover following each harvest. At the start of the experiment in May 2004, these percentages of removal corresponded to 5, 3.75, 2.5, 1.25, and 0 Mg ha(-1) yr(-1) of stover left on the soil surface, respectively. Annual stover removal rate of > 25% reduced SOC and soil productivity, but the magnitude of impacts depended on soil type and topographic conditions. Stover removal rate of 50% reduced grain yield by about 1.94 Mg ha(-1) er yield by 0.97 Mg ha(-1), and SOC by 1.63 Mg ha(-1) in an unglaciated, sloping, and erosion-prone soil (P < 0.05). The initial water infiltration rates were significantly reduced by > 25% of stover removal on a RSL and CSL. Plant available water reserves and earthworm population were significantly reduced by 50% of stover removal at all soils. Increases in soil compaction due to stover removal were moderate. Stover removal impacts on SOC, crop yield, and water infiltration for HCL were not significant. Results from this study following 2 1/2 yr of stover management suggest that only a small fraction (<= 25%) of the total corn stover produced can be removed for biofuel feedstocks from sloping and erosion-prone soils. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据