4.8 Article

Continuous low-voltage dc electroporation on a microfluidic chip with polyelectrolytic salt bridges

期刊

ANALYTICAL CHEMISTRY
卷 79, 期 20, 页码 7761-7766

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac071197h

关键词

-

向作者/读者索取更多资源

A microfluidic electroporator operating under a continuous low dc voltage (7 to similar to 15 V) is reported. The proposed electroporation microchip exploits the ionic conductivity of polyelectrolytic gel electrodes to precisely control the electric field that is applied to cells without bubble generation in the microchannel. In this study, pDADMAC (poly diallyldimethylammonium chloride) was used to efficiently apply the electric potential difference to the cells in the microchannels. Impedance analysis showed that the pDADMAC plugs could work as ionic conductors with a conductivity of approximately 16 S m(-1). In accordance with the calculation using CFD-ACE, an input voltage of only 10 V could generate an electric field of 0.9 kV cm(-1) across the microchannel; this meets the requirements for electropermeation. The electropermeation of K562 human chronic leukemia cells was observed in the microchip from 7 V, and the efficiency increased up to 60% upon the application of an input voltage of 15 V with a viability of 80%. An amount of 10(5) cells could be transfected every minute under a constant potential difference. The transfection and expression of DNA plasmids were also successfully demonstrated in the suspension cell line.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据