4.8 Article

Forming antifouling organic multilayers on porous silicon rugate filters towards in Vivo/Ex vivo biophotonic devices

向作者/读者索取更多资源

We describe the development and optimization of porous silicon photonic crystal surface chemistry towards implantable optical devices. Porous silicon rugate filters were prepared to obtain a narrow linewidth reflectivity peak in the near-infrared (7001000 nm) with low background reflectivity elsewhere. The morphology of the mesoporous structures (pore diameter < 50 nm) was such that only small proteins could infiltrate the pores whereas larger proteins were excluded. To provide stability in biological media, we established an approach to build organic multilayers containing hexa(ethylene oxide) moieties in porous silicon. The optical changes associated with organic derivatization were monitored concurrently with FTIR characterization. Furthermore, the antifouling capability of our chemical strategy is assessed and the penetration of different sized proteins into the structure was determined. The structural stability in biological environments was evaluated by incubation in human blood plasma over time while monitoring the optical signature of the photonic crystal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据