4.6 Article

Electrical microfluidic pressure gauge for elastomer microelectromechanical systems

期刊

JOURNAL OF APPLIED PHYSICS
卷 102, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2801008

关键词

-

资金

  1. NHGRI NIH HHS [R01 HG002644-01A1, R01 HG002644] Funding Source: Medline
  2. NIBIB NIH HHS [K99 EB007151, K99 EB007151-01] Funding Source: Medline

向作者/读者索取更多资源

We report on an electrical microfluidic pressure gauge. A polydimethylsiloxane microvalve closes at a characteristic applied pressure determined by the material's properties and the valve's dimensions. Hence, when the same pressure is applied to all valves of a heterogeneous valve array, some valves close while others remain open. The state of the array is combined with knowledge of the respective characteristic closing pressures of the individual valves to yield an estimate of the applied pressure. The state of each valve is obtained by electrical measurements, since the electrical resistance of the respective underlying fluid-filled channel increases by at least two orders of magnitude as the valve closes and its insulating elastomer material interrupts the electrical circuit. The overall system functions as a pressure gauge with electrical readout. This device would be a critical component in active pressure-regulation loops in future integrated microfluidic systems. (C) 2007 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据