4.8 Article

Radiation induced spent nuclear fuel dissolution under deep repository conditions

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 41, 期 20, 页码 7087-7093

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es070832y

关键词

-

向作者/读者索取更多资源

The dynamics of spent nuclear fuel dissolution in groundwater is an important part of the safety assessment of a deep geological repository for high level nuclear waste. In this paper we discuss the most important elementary processes and parameters involved in radiation induced oxidative dissolution of spent nuclear fuel. Based on these processes, we also present a new approach for simulation of spent nuclear fuel dissolution under deep repository conditions. This approach accounts for the effects of fuel age, burn up, noble metal nanoparticle contents, aqueous H-2 and HCO3- concentration, water chemistry, and combinations thereof. The results clearly indicate that solutes consuming H2O2 and combined effects of noble metal nanoparticles and H-2 have significant impact on the rate of spent nuclear fuel dissolution. Using data from the two possible repository sites in Sweden, we have employed the new approach to estimate the maximum rate of spent nuclear fuel dissolution. This estimate indicates that H-2 produced from radiolysis of groundwater alone will be sufficient to inhibit the dissolution, completely for spent nuclear fuel older than 100 years.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据