4.6 Article

Buckling pressure of pumpkin balloons

期刊

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
卷 44, 期 21, 页码 6963-6986

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2007.03.021

关键词

scientific balloons; membrane structures; isotensoid; buckling; symmetry transformation

向作者/读者索取更多资源

This paper presents a computational study of the critical buckling pressure of pumpkin balloons, which consist of a thin, compliant membrane constrained by stiff meridional tendons. The n-fold symmetric shape of a pumpkin balloon with n identical lobes is exploited by adopting a symmetry-adapted coordinate system, which leads to the tangent stiffness matrix in an efficient block-diagonal form; the smallest eigenvalue of a particular block leads to the buckling pressure for the balloon. Two different types of balloon design are considered. Extensive results are obtained for the buckling pressures of a set of 10 in diameter experimental balloons and also for an 80 m diameter flight balloon. The key findings are as follows: the same type of buckling mode, forming four circumferential waves is critical for most of the balloons that have been analysed; balloons with flatter lobes are more stable, and the buckling pressure varies with an inverse power-law of the number of lobes; increasing the Young's modulus, the Poisson's ratio of the membrane, or the diameter of the end fitting has the effect of increasing the buckling pressure; but increasing the axial stiffness of the tendons has the effect of decreasing the buckling pressure. (C) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据