4.5 Article

Domain mapping on the human metastasis regulator protein h-Prune reveals a C-terminal dimerization domain

期刊

BIOCHEMICAL JOURNAL
卷 407, 期 -, 页码 199-205

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BJ20070408

关键词

dimerization; metastasis; non-metastatic protein 23 (NM23-HI); phosphodiesterase (PDE); protein-protein interaction; prune

向作者/读者索取更多资源

The human orthologue of the Drosophila prune protein (h-Prune) is an interaction partner and regulator of the metastasis suppressor protein NM23-H1 (non-metastatic protein 23). Studies on a cellular breast-cancer model showed that inhibition of the cAMP-specific PDE (phosphodiesterase) activity of h-Prune lowered the incidence of metastasis formation, suggesting that inhibition of h-Prune could be a therapeutic approach towards metastatic tumours. H-Prune shows no sequence similarity with known mammalian PDEs, but instead appears to belong to the DHH (Asp-His-His) superfamily of phosphoesterases. In order to investigate the structure and molecular function of h-Prune, we expressed recombinant h-Prune in a bacterial system. Through sequence analysis and limited proteolysis, we identified domain boundaries and a potential coiled-coil region in a C-terminal cortexillin homology domain. We found that this C-terminal domain mediated h-Prune homodimerization, as well as its interaction with NM23-H1. The PDE catalytic domain of h-Prune was mapped to the N-terminus and shown to be active, even when present in a monomeric form. Our findings indicate that h-Prune is composed of two independent active sites and two interaction sites for the assembly of oligomeric signalling complexes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据